物体识别
物体识别是计算机视觉领域中的一项基础研究,它的任务是识别出图像中有什么物体,并报告出这个物体在图像表示的场景中的位置和方向。目前物体识别方法可以归为两类:基于模型的或者基于上下文识别的方法,二维物体识别或者三维物体识别方法。对于物体识别方法的评价标准,Grimson 总结出了大多数研究者主要认可的 4 个标准:健壮性(robustness)、正确性(correctness)、效率(efficiency)和范围(scope)。
物体识别
此时的主流方法是只从图像本身考虑,而不去管物体原来的三维形状。这类方法统一叫做appearance based techniques。所谓appearance, 从模式识别的角度去描述的话,就是图像特征(feature),即对图像的一种抽象描述。有了图像特征,就可以在这个特征空间内做匹配,或者分类。然 而这个方法还是存在很多问题,首先它需要我们对所有的图片进行对齐,像人脸图像,就要求每一幅图中五官基本在固定的位置。但是很多应用场景下,目标并不是 像人脸那么规整,很难去做统一对齐,而且这种基于全局特征和简单欧式距离的检索方法,对复杂背景,遮挡,和几何变化等并不适用。
物体识别的步骤
图片的预处理
预处理几乎是所有计算机视觉算法的一步,其动机是尽可能在不改变图像 承载的本质信息的前提下,使得每张图像的表观特性(如颜色分布,整体明暗, 尺寸大小等)尽可能的一致,主要完成模式的采集、模数转换、滤波、消除模糊、减少噪声、纠正几何失真等操作。
预处理经常与具体的采样设备和所处理的问题有关。例如,从图象中将汽车车牌的号码识别出来,就需要先将车牌从图像中找出来,再对车牌进行划分,将每个数字分别划分开。做到这一步以后,才能对每个数字进行识别。以上工作都应该在预处理阶段完成。在物体识别中所用到的典型的预处理方法不外乎直方图均衡及滤波几种。像高斯模糊可以使之后的梯度计算更为准确;而直方图均衡可以克服一定程度的光照影响。值得注意的是,有些特征本身已经带有预处理的属性,因此不需要再进行预处理操作。
以上就是关于河北互动旋钮厂家来电洽谈「在线咨询」日长篱落无人过全部的内容,关注我们,带您了解更多相关内容。